Metal–organic ‘micromushrooms’ repel all

A clever chemical transformation yields surface-bound microstructures that efficiently drive away oil- and water-based contaminants. Natural surfaces that repel water, such as lotus leaves or butterfly wings, often have a rough, microscale texture that traps air beneath the liquid droplet. By mimicking these biological structures, researchers have developed ‘superhydrophobic’ coatings that are highly resistant to wetting. One trick unknown to nature, however, is the ability to repel hydrocarbon-based oils that have much lower surface tension than water and tend to spread out rather than bead up.(10.1021/ja407896m)

Bibliography

Author: Robert Slinn

Robert Slinn is ChemSpy's guest columnist. You can read his chemical news updates under the banner "Slinn Pickings". Robert is a Chartered Chemist (CChem), Member of the Royal Society of Chemistry (MRSC) and is a Visiting Researcher in the Department of Chemistry at the University of Liverpool. He has extensive experience in R&D: synthesis, analysis and analytical methods development; troubleshooting, consultancy, and teaching/training methods in industry and in academia. Robert is also 'Physical Methods' author for the Specialist Periodical Report series 'Organophosphorus Chemistry', published by Royal Society of Chemistry, Cambridge, UK. Robert has worked alongside David on the Bedside Book of Chemistry and a major Thomson-Reuters report on the state of the pharmaceutical industry for the 2011 International Year of Chemistry